C1201-1/4H C1221R-1/4H强度高高精度铜带C64725-SH、NKC388-SH、NKC286-SH、NKC1816-SH、NKC164-SH、NKC164E-SH、C7025-SH、CAC60-SH、CAS70-SH、KA250-SH、C64780-SH、C64760-SH、C64745-SH、C64728-SH、NKC286S-SH、NKC4419-SH、NKB083-SH、NKB032-SH、64800-SH、EFTEC3-EH、C1441-EH、C14410-EH、SNDC-EH、TAMAC2-EH、HCL-12S-EH、TAMAC4-EH、KFC-EH、DK-3-EH、C19220-EH、TAMAC194-EH、KLF194-EH、OLIN194-EH、CAC15-EH、C19810-EH、TAMAC5-EH、C19520-EH、EFTEC8-EH、C18990-EH、EFTEC45-EH、C18020-EH、C18045-EH、EFTEC64-EH、EFTEC64T-EH、NFC11-EH、YCC(C18200)-EH、NK120-EH、MZC1-EH、C15150-EH、NB105-EH、C19020-EH、C19025-EH、NB109-EH、NIPZ-EH、DK10-EH、OLIN195-EH、C19500-EH、MSP1-EH、C18665-EH、CAC16-EH、C19800-EH、OLIN19720-EH、C19720-EH
采用传统Tafel 拟合计算得出腐蚀速率。与未微合金化的锰黄铜相比,锆微合金化的锰黄铜腐蚀速率降低了74.5%,说明其电化学耐蚀性更好。
摩擦磨损性能
通过锰黄铜在室温下的湿摩擦系数随磨损时间变化曲线可以看出,未合金化和锆微合金化的湿摩擦系数变动幅度均较小,都有较优的耐磨性能。但是锆微合金化的锰黄铜具有更低的平均摩擦系数(0.0254),与未合金化的锰黄铜(0.0315)相比降低了19.3%。
通过锰黄铜的磨痕形貌可以看出,摩擦后的表面特征有如下几点:
①沿滑动方向上存在着明显的犁沟,犁沟深且多;
②犁沟旁边均出现了部分承载面。说明该区域在摩擦力的作用下发生了塑性变形,但没有发现裂纹,表明无脆性断裂现象 [3] 。
力学性能
通过铸态锰黄铜的拉伸性能可以看出,微量元素锆的加入,使锰黄铜的抗拉强度提高5.5%,屈服强度提高了24.2%,但是伸长率降低了6.5%。这是由于锆在锰黄铜中起到细晶强化的作用,而位错增强导致了合金塑性降低,伸长率也会相应的减小。